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ABSTRACT Networks of transcriptional regulators have
key roles in metazoan development. Important forces in the
evolution of these networks are gene duplications and gene
deletions, events that may change the spatiotemporal expres-
sion pattern of network genes. A measure for the probability of
such changes after gene-duplication events is proposed. This
measure is based on a simple mathematical model that de-
scribes such networks as dynamical systems and on properties
of ensembles of these dynamical systems. It is predicted that
this probability depends only on the fraction of genes dupli-
cated in a single event and that it is largest if =40% of the genes
in a network are duplicated. This property is robust with
respect to variations in model parameters. On these grounds,
it is argued that (i) evolution of gene networks should prefer-
entially occur either by duplication of single genes or by
duplication of all genes involved in a network, and that (it) tight
linkage ("clustering") or strong dispersal are the two evolu-
tionarily most favorable forms ofgenomic organization ofgenes
forming such networks.

The expression ofmost protein-coding genes in eukaryotes is
regulated predominantly on the transcriptional level (1). The
initiation rate ofRNA polymerase II at these genes is mainly
determined by the interaction of a "basal" transcription
machinery with one or more general transcription factors
bound to promoter sites in the vicinity of a gene (1, 2). The
many complexities involved in transcriptional regulation,
such as competition for binding sites on the DNA by tran-
scription factors (3) and posttranslational regulation of the
activity of transcription factors themselves-e.g., by protein
phosphorylation (4), differential splicing (5), and heterotypic
dimerization (6)-strongly suggest that a comprehensive
quantitative theory of transcriptional regulation will not be
available in the foreseeable future. The lack of any such
theory is regrettable in light of the observation that transcrip-
tion factors play crucial roles in the early development of
metazoans. Two well-investigated examples, early Drosoph-
ila development (7) and axial patterning in vertebrates (8),
indicate that sets ("networks") of genes encoding transcrip-
tional regulators that mutually regulate each other's expres-
sion stand at the very basis of cell-fate determination and
regional determination in metazoan embryos. Although early
zygotic genes in Drosophila and Antennapedia-class ho-
meobox genes in Drosophila and vertebrates are thus far the
empirically best-understood examples, circumstantial evi-
dence from different developmental processes (9-11)
strongly suggests that similar networks will be found to act in
those processes as well.
Although individual regulatory proteins in networks inves-

tigated thus far seem to display a remarkable degree of
structural and functional conservation (8, 12), the structure of

networks themselves seems to evolve slowly over time.
Duplications and deletions of single genes, as well as dupli-
cations of all or a large fraction of the genes involved in a
network, seem important agents of change in these systems
(13). Due to the lack of quantitative models of transcriptional
regulation, we poorly understand what kind of evolutionary
phenomena are to be expected in these networks. Are
duplications of genes interacting in a network-like fashion
likely to perturb developmental processes? Do duplications
of different numbers ofgenes cause different degrees of such
perturbations? Finally and more specifically, is the fact that
duplication of, for example, half a homeobox cluster never
been observed coincidental or is it to be expected on theo-
retical grounds?

This contribution proposes a simplified model that may
help to approach these and similar questions. No attempt is
made to fully cover the biochemical phenomena underlying
transcriptional regulation. Instead, the consequences of the
network character of the regulatory system under consider-
ation are emphasized, and it is this network character upon
which conclusions are based. Possible consequences of the
effects of gene duplications on the genomic organization of
the genes involved are discussed.

THE MODEL
Different and only partially overlapping sets of transcription
factors are expressed in different cells or different regions at
any given stage of development of an organism. The model to
be developed below refers to the expression of transcription
factor genes only in one developmental stage and only in one
set of cells (nuclei) that have an expression pattern in com-
mon-e.g., a set ofnuclei in a part ofa Drosophila blastoderm
expressing a specific subset of gap genes and pair-rule genes.
A subset ofN such genes 6: = {G1, . . ., GN}, the products of
which mutually regulate each other's expression on the tran-
scriptional level, will henceforth be referred to as a "net-
work." The size of known candidate networks that presum-
ably rely mostly on transcriptional regulation among their
member genes is small, probably being much less than 100
genes for any given network.
Each such network is visualized as a dynamical system, in

which an initial gene expression state or activation state of
the network-i.e., an array of concentrations of proteins at
time t = 0, i;(o): = {P1(0),. . ., PN(0)} encoded by the genes
{G1,..., GN} changes in time due to cross-regulation and
auto-regulation of the expression of the member genes by
their gene products. This initial state may be a response to an
extracellular signal, such as a growth factor or a specific
composition of nutrients in the medium. It will be imposed
onto the network by the products ofone or more "upstream"
genes that are not themselves part of the network, insofar as
their activity is not regulated by members of the network.
Note that the borders of such a network are somewhat
arbitrary: the upstream genes may well encode transcrip-
tional regulators, too-e.g., a retinoic acid receptor acting on
homeobox genes in a developing vertebrate limb, as long as
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their activity is independent of the rest of the network. Also,
the members of a network will regulate the transcription of
genes downstream of the network-e.g., structural genes or
genes involved in cell-cell signaling (8, 14).
To arrive at an analytically and computationally tractable

mathematical model and to minimize the number of param-
eters involved in the model, a number of simplifying assump-
tions are necessary. (i) It is assumed that expression of the
genes in the network is regulated exclusively on the tran-
scriptional level. (ii) Each gene of the network is assumed to
produce one and only one species ofan active transcriptional
regulator. (iii) In lack of a comprehensive kinetic theory of
transcriptional regulation, it is simply assumed that enhancer
elements mediating each regulator's effect on the expression
ofa target gene act independently from enhancer elements for
other regulators of the same gene. (iv) In line with empirical
evidence (15-18) it is assumed that strong cooperative effects
of transcriptional activation by individual transcription fac-
tors are mainly responsible for strong transcriptional activa-
tion (repression) of a target gene. For reasons of computa-
tional convenience, the admissible concentration range for
each Pi in {P1,. . ., PN} will be normalized and restricted to the
interval [0,1], where Pi = 1 corresponds to the maximal
possible concentration-i.e., the corresponding gene GI is in
a state of maximal transcriptional activation. On the basis of
the above simplifications and observations, the following set
ofequations describing the dynamics of the expression states
of the genes in a network is proposed:

Pi(t + T) = gc(fi(t) + e,)
N

fi(t): = Z wUP#(t) ie{1,. . ., N}. [1]
j=1

T is a time constant characteristic for the process under
consideration and will depend on biochemical parameters,
such as the rate oftranscription or the time necessary to export
mRNA into the cytoplasm for translation. The constants wV e
9R infi describe the "strength" of interaction ofthe product of
genej with gene i-i.e., the degree oftranscriptional activation
(wv > 0) or repression (wy < 0) that the transcriptional
regulator produced by gene j has on gene i. These constants
define a matrix of "connectivities" w = (we) of the network.
It is the relative size ofthe connectivities that is relevant to the
dynamics. gc(x) is some sigmoidal activation or "gain" func-
tion-e.g., 1/[1 + exp(-cx)]. The system's dynamics will be
very sensitive to stochastic perturbations if any of its argu-
ments is close to zero, unless the slope c ofgc(x) is steep near
x = 0. Therefore, only the limiting case of c -*00 will be
considered. ei is a constant that reflects either a basal tran-
scription rate (ei > 0) of gene Gi or influences of upstream
genes on gene Gi. Because the relevant properties of the
network are independent of any such constant and because a
large value of Iel may override and, thus, obscure the effect of
regulators inside the network, it will be set to zero. Further,
a change of variables S: = 2P- (1,. . ., 1) will facilitate
analytical treatment. Eq. 1 thus becomes

Si(t + r) = [,2 wijSj(t)] = [hi(t)], [2]

where Si = 1 corresponds to gene Gi being ON and (Si = -1)
corresponds to Gi being OFF. a, (x) is the sign function [o(x)
= -1 for x < 0,o(x) = + 1 for x >0 ando(0) = 0]. Clearly,
many simplifications are involved-for example, about the
absence of time delays, negligence of spatial and diffusion
effects, and a small half-life of the proteins compared to T.
Although Eq. 2 is similar to a formalism used in the theory of
neural computation (19) and in "spin glass" models of gene
networks (20), the model is conceptually different from the

latter class of models in that it is concerned with a specific
type of genes.

I will focus on a subset of networks des ibed by Eq.
2-namely, those that, given an initial state S(0), converge
ultimately to a stable equilibrium state Seq i.e., a state such
that Seq = lima- Si(t) holds for all i. Empirically speak-
ing, Seq is interpreted as a stable expression pattern of
network genes attained through cross-regulation and auto-
regulation within the network. Any such pattern will induce
expression of specific downstream genes affecting the phe-
notype of the organism. Although the model thus introduced
is a haploid one, all results derived from it will hold in the
diploid case as long as there is little allelic variation in the
magnitude of connectivities.

Duplication of one or more genes in a network creates
another network in a higher dimensional state space. As-
sume, without loss of generality, that GI through Gk are
duplicated. The activation state of a network is then ex-
panded, according to a function ir:

ir: {-1, 1}N...{.-1, +l}N+k

(Si,..., Ski Sk+19 ... SN) --

(S1, Sl,..., Sk, Sk, Sk+l'* SN).

The matrix w is transformed into a (N + k) x (N + k) matrix
wd, in which columns and rows 1 through k are duplicated.
The interaction strengths within the duplicated part of the
network are kept identical to those in the corresponding
original part. The state at time t ofa network with some genes
duplicated and the corresponding equilibriug state, if any
such state is attained, will be denoted as Sd(t) and Sdeq,
respectively. It is important to note that even if a network
and a network derived from it by duplication of a number of
genes will have the "same" initial states, S(0) and 9d(O) =
ir[9(0)], subsequent states will, in general, not be equal, in the
sense thatS(t) # ir-i[d(t)]. Here ir-1 denotes the inverse of
ir-i.e., a projection of the higher-dimensional state space in
the original state space. Note that ir-1 is invertible because
the values of each pair of state variables corresponding to
original and duplicated gene are the same at any time t if the
networks had corresponding original states.
To compare equilibrium states attained before and after

duplications, given the corresponding initial states 5(0)
and iif9(0)], the Hamming distance

d 1 iNdh[Seq, 71-i(Seq,d)]. = - -ESql-(f~) [3]

will be used.
In lack ofcomprehensive evidence that allows conclusions

regarding properties of "typical" initial states, equilibrium
states, or connectivity matrices, a statistical characterization
of networks having simple properties in common will be
attempted. (i) It is assumed that the matrix w is drawn from
a probability distribution with density p(w) = HN-=j p(wu),
where p(wu) is the density of entry wu. p(wu) is chosen to be
the same for all entries and symmetrical around zero. These
assumptions imply two network properties-namely, that
each transcriptional regulator can activate or repress tran-
scription depending on the promoter it acts upon (21) and that
the numbers of transcriptional repressors and activators are
approximately equal. (ii) Initial state and equilibrium state
are characterized by the mean number of genes being ON-
i.e., they are specified probabilistically as Prob[Si(O) = 1] =
po and Prob[Sfq = 1] = Peq (Po, Peq e [0, 1]). Only properties
of the whole ensemble of dynamical systems defined by the
set of triplets:
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[41 irIS(O)] was used as an initial state for the network with
[4 1 duplications. Next I assume that

will be considered. Because Sq = lime Sj(t) is a constraint
that any matrix w chosen for a given pair [S(O), Pq] has to
satisfy, the ensemble is characterized by patterns of corre-
lations between connectivities as well as between connec-
tivities and the states of the network, interfering with efforts
to analyze Eq. 4 analytically. Duplication ofthe same k genes
in el elements of E induces a new ensemble Ed: = [wd,

9(S(0)),Seqd]. Only elements of E that reach an equilibrium
state after duplication have counterparts in Ed.
Two complementary approaches were pursued to charac-

terize properties of Eq. 4 with respect to gene duplications.
In the first approach, samples of the space E were obtained
numerically. A pair of state vectors [5(0), Seq] was chosen
with a pseudo-random number generator, according to the
rules outlined above, and a stochastic search in the space of
connectivity matrices was done until a matrix w was found
that satisfied (Eq. 4) for the given pair of states. This
stochastic search, a simulated annealing procedure in the
matrix space, utilized a large (>100) set of matrices generated
randomly according to the probability distribution described
above. Exploration of the space was done by adding pseudo-
random numbers distributed with density p(wv) to a fraction
of the individual entries of the matrices. Once a matrix with
the desired property had been found, a new pair of state
vectors was chosen, and a new search was carried out. By
these means, a sample E of size 100 was obtained. Several
independent duplications of randomly chosen k-tupels of
genes were done on each of the members of this sample, and
sample statistics on Eq. 3 were calculated.
The second approach is an analytical approximation that

assumes that the correlations occurring in the ensemble are
weak. As will be seen below, both approaches yield quali-
tatively identical results.

RESULTS
Deviations from an optimal expression state ofnetwork genes
will most likely cause deleterious phenotypic effects. The
probability of any such deviation after a gene-duplication
event-i.e., the probability that djeq, j-l(geqd)) # 0 in the
ensemble of Eq. 4-will therefore be used as a probabilistic
measure of the effect of gene duplication. From Eq. 2 it is
clear that duplication of a whole network will have no effect.
Intuitively, one might therefore assume that the effect of
duplicating k out of N genes increases monotonically from
zero as (i) k is increased from zero or (ii) as k is decreased
from N, thus leading to a maximal effect for some interme-
diate value of k. Also, the increase in effect should be larger
in case (i), such that the maximum effect occurs for k < N/2.
The following considerations suggest that this intuition is
correct.

Initially, it will be assumed thatpo = Peq = 0.5-i.e., a class
of networks is considered in which 50% of the genes are
"ON" in the initial and in the equilibrium state. Assuming that
correlations between states and connectivities and correla-
tions among connectivities in the ensemble of Eq. 4 are weak
and that the marginal distribution of individual connectivities
in E is well-approximated by the original distribution, p(wu),
one can write the quantity hi(0) of gene Gi at time t = 0 as the
sum ofN stochastically independent, identically distributed
random variables Xj: = wuSj(0)-i.e., hi(0) = X1 + . . . + XN.
It is easy to see that the probability distribution of Xj is
identical to the distribution of wV. The quantity correspond-
ing to hi(0) after duplication of k genes, denoted as hid(0), is
given by hd(O) = 2X1 + . . . + 2Xk + XK+1 ++.. . + XN, if

ProbldhA(r), X-I[Sd(r)]) # o} X

holds, implying that information about the states after the
first-time step is sufficient to make qualitative assertions
regarding the probability of displace ent of Equilibrium
states after gene duplication. Prob{dh(O(0),11[Sd(T)I)# 0}
depends only on the number of sign changes that occur in the
quantities hi'(0) with respect to hi(O). The probability of such
a sign change if k genes are duplicated, p., is given by

Pk: = Prob[h,{O)hd(0) < 0]

Here p(x) denotes the density of a sum of of the random
variables X--i.e., the i-fold convolution of the density p(wy).
Under the above assumptions, the covariance ((wvSj)

(wkvSj)) over E vanishes for any i # k, implying that the
number of quantities hi that change signs after duplication is
binomially distributed, yielding

Prob{dh(S(r), X [d(T)]) 0} = 1 - (1 -Pk )N [7]

A class of distributions of wu will now be considered that
allows numerical evaluation of Eq. 6 and, ultimately, gener-
alizations to a wider class of distributions. Assume that the
density p(wu) is given by (1 - c)8(wu) + cp(wu) for all ij, where
8 denotes the Dirac delta function. p denotes a Gaussian
density, p(wv) = 1/(V2.u) exp[-wU/(2cr2)], with variance o.2
and mean zero. c is the probability of a connectivity being
different from zero. Nc is the mean number of genes that
influence the transcriptional state of any given gene. There-
fore, c is a measure for the "density" of regulatory interac-
tions in the network. HenceforthpNfrom Eq. 6 will be denoted
as p~k(c), indicating that it may depend on c. In the case of c
= 1, corresponding to a "fully connected" network with
Gaussian distribution of connectivities, it can easily be seen
that Eq. 6 is invariant with respect to changes in a,. This is a
very important property, because it follows that pkN depends
only on the ratio r: = k/N-i.e., no matter what number of
genes are involved in a network and no matter what the
variance of the distribution of individual connectivities is, the
mean effect of a gene duplication depends only on the fraction
of genes duplicated. Results of numerical integration of Eq. 6
are shown in Fig. 2A. Most importantly, the effect of gene
duplications, as defined in Eq. 7, is a unimodal function of r,
with the maximum located at r,,. 0.41-i.e., on average, the

effect ofgene duplications on anetwork is largest ifroughly 40%6
of the genes are duplicated. It is only this qualitative feature of
pk' that will be relevant here. A comparison of Eq. 6 and an
equivalent form, pk' = 2f ' p,(X) f2 PN-k(y)dydx, shows that
under the above assumptionspNN-k = p4k/4, and therefore that
PNN-k < pjk for k/N < rma--i.e., p~k is not mirror symmetric
around rn., as exemplified by Fig. 2A. Fig. 1 shows that these
theoretical predictions agree qualitatively with the statistics of
duplication effects obtained from a computer-generated sample
ofE. Although differences in effects observed in the simulations
are smaller, unimodality as well as a slight displacement of the
peak to the left of k/N = 0.5 can be observed. This agreement
is quite remarkable because the assumption ofEq. 5 implies that

Probldh(Seq, X[-1[9deq(j]) $ °} [5E

=2f (f Pk(Y)dY)PN-k(X)dX.
o /2

[6]

E: = (W, S(o), Seq)
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FIG. 1. Effects ofgene duplications on a network ofN = 10 genes
with "dense" (c = 1) regulatory interactions. po = Peq = 0.5, k e {1,
... . 9}, p(wy) Gaussian. "Expected" values are given by 1 - (1 -
pkf)N as in Eq. 7, using numerical integration of Eq. 6. "Observed"
values represent numerical results obtained by simulating the effect
of duplication of k genes out ofN genes for each network in a sample
of size 100 of the ensemble E. Numbers presented are based on at
least 990 duplications for each k. Depicted is the fraction ofnetworks
that attain, after duplication, a stable equilibrium state that is
different from the original equilibrium state.

all "dynamical" aspects of the dynamical systems in E are
neglected by the analytical approach.

In the more realistic case of c < 1-i.e., a case where not
all other genes influence the expression of any given gene,
gene duplications can affect connectivities that are zero.
Taking this into consideration, pk'(c) becomes

p NA 1 ,h)
Pk k h=1 i=max(h+k-N,O)

(h) (N kC)c(1 _ c)N-h[p^(c)c=i1]. [8]

Fig. 2A shows results of numerical integration of Eq. 8 for
several values of c, indicating that for any given ratio k/N
effects of gene duplications decrease but that the overall
qualitative pattern is conserved in that pkN(c) is unimodal as
a function of k. Also, note that the amount of this decrease
is only minor between c = 1.0 and c 0.5, whereas below c

< 0.5 it becomes fairly large. Fig. 2B shows the correspond-
ing results for some computer-generated samples of E, again
showing good agreement between theory and simulation
results. The small discrepancies from the expected patterns
in Fig. 2B are attributable to the fact that, due to the vast
amounts of computing time required, only small samples
could be obtained. Theory predicts that in this range changes
in effects are small, such that the sample sizes available do
not provide the amount of statistical significance required.
Changing the mean number of transcriptionally active

genes in the initial state and in the equilibrium state in the
sense thatPO = peq # 0.5 is permitted should, according to the
assumptions of the model, have no effect on equilibrium
states, because the covariance ((wUSj)(wjkSk)) is still zero.
This is where the agreement between theory and simulation
breaks down because computer simulations show a slight
reduction in the effect of a duplication of any given number
of genes if these values are decreased or increased (results
not shown). However, unimodality of duplication effect as a
function ofthe fraction ofgenes duplicated still holds, leaving
the qualitative relationships observed thus far unaffected.

m;
(i ;;

FIG. 2. Dependence of the effect of gene duplications on the
"density" of regulatory connections, c. N = 10, po = pq = 0.5, k e
{1,. . 9}, p(w) Gaussian. (A) Analytically expected values, given
by 1 - [1 - pf (C)]N, where pkf (c) was obtained by numerical
integration of Eq. 8. For any given value of k/N, effects decrease
monotonically as c is decreased. (B) Results obtained by simulating
the effect of duplication of k = 1 through k = 9 out of 10 genes for
each network in a sample of size 100 of the ensemble E. Figures
presented are based on at least 990 duplications for each k e {1....

9}. Depicted is the fraction of networks that attain, after duplication,
a stable equilibrium state that is different from the original equilib-
rium state. Calculation of G-statistics (22) indicated that, for each k,
differences in the observed frequencies are significant at P << 10-4.

The fact that networks of transcriptional regulators have
different initial states and different equilibrium states in
different cell types has thus far been neglected. However, a
line of reasoning similar to the one above suggests that Eq.
5 still holds for any of the pairs of states involved, as long as
pairs of states are stochastically independent. Also, com-
puter simulations in which two pairs of states are assigned to
each network show that there is no change in the qualitative
relationships outlined above (results not shown).
The distributions involved in calculatingppNare assumed to

be distributions of sums of independent random variables.
Because such sums are asymptotically normally distributed,
one might suppose that the results obtained above hold also
for different types of distributions for w,, especially when N
is large. Using double gamma distributions for individual
connectivities [p(x) = [2r(a)] -le -xIxla-l for some parameter
a > 0] in simulations analogous to the ones described above
yields patterns qualitatively identical to those reported above
even for network sizes as small asN = 10 (results not shown).
This suggests that unimodality of effects as a function ofk/N
may be a generic property of Eq. 6, conserved over a range
of distribution types.

DISCUSSION
Little is known about specific properties of networks of
transcriptional regulators, such as the distribution of the
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number of genes that are transcriptionally active in different
cell types or the average number of genes that regulate the
expression of any given gene in the network. It is therefore
reassuring that the model introduced above makes qualita-
tively identical predictions over a wide range of model
parameters. Results obtained are robust with respect to
changes in the "density" of regulatory interactions within a
network and with respect to biases in initial state and
equilibrium state. They are insensitive to distribution param-
eters and, presumably, to the specific distribution type used
for individual interaction strengths. The main results can be
briefly summarized as follows: The probability that a gene-
duplication event alters the equilibrium expression pattern of
network genes is a unimodal function of the fraction of
network genes that are duplicated in a single duplication
event. It is highest when -4MO of the genes are duplicated.
Also, according to the model, duplication of all network
genes does not affect their expression pattern.
The measure for the effect of gene duplications used above

refers to equilibrium states as being "identical" if the corre-
sponding set of genes is expressed in the original network and
in the network after duplications. Because ofthe high selective
burden superimposed onto such equilibrium states (21), effects
of changing the expression state of as few as only one gene
will, in most cases, be highly deleterious if not lethal. Thus,
even the small differences in effects evident from the simula-
tion results in Fig. 1 will affect the kind of duplication events
that are likely to be tolerated and that will therefore be
predominant in the evolutionary record. Also, regulatory
networks will, in most cases, have different initial states and
equilibrium states for different tissues and/or developmental
stages. Those states may be independently affected by gene
duplications, which will massively enhance differences in
effects of duplications of different numbers of genes.

Probably partly due to their ancient evolutionary origins
(23) clusters of Antennapedia class homeobox genes have
developed manifold and peculiar interdependencies in their
expression patterns (6). Although they may, therefore, not
present ideal examples for illustration of the principles pro-
posed above, some data regarding their evolution is available,
and the observed patterns coincide well with the predictions
made above. Duplications of whole clusters as well as
duplications of individual genes have left traces in the evo-
lutionary record. However, there is as yet no reported
incidence of a duplication of, for example, half of the genes
of a cluster in a single event, in agreement with the prediction
that such events are less likely to be tolerated by the
developmental system.

Evolutionary forces shuffling long stretches of DNA, such
as duplications of parts of chromosomes are abundant and act
on a fairly short time scale. It has been shown that such forces
were involved in the evolution ofhomeobox gene clusters (24).
There is also evidence for a positive correlation between the
rate of anatomical evolution and the rate of chromosomal
evolution, suggesting that chromosomal mutations may be an
important factor in the evolution of developmental systems
(25). It seems therefore likely that chromosomal mutations
contribute in a major way to the evolution of developmentally
relevant gene networks. The question then arises as to whether
there is an optimal organization of the genes involved in a
network, so that gene duplications caused by these events are
unlikely to have immediate deleterious effects. For example,
a scenario in which half of the genes of a network are tightly
linked on one chromosome, whereas the other half is also
tightly linked but located on a different chromosome is clearly
unfavorable. In most cases, duplications by means of chro-
mosomal rearrangements will affect 50%o of the genes in a
network causing perturbations in development. Two most
favorable forms of organization are predicted by the model.
Either all genes of a network should be very closely linked in

one chromosome or individual genes should be overdispersed
in the genome-i.e., they should be as "far apart" from each
other as possible. Duplication events are then likely to affect
the whole cluster of genes or only single genes, respectively.
Note that, once established, a transition between these forms
of organization is unlikely because intermediate stages would
occur that are more vulnerable to duplications of only parts of
the genes of the network. Moreover, in the case of tight
linkage, various events may cause additional cohesive forces,
as in the case of homeobox gene clusters where regulatory
sequences for individual genes may be spread throughout the
cluster (26). Which type oforganization is more likely to occur
will depend on the type of events responsible for most dupli-
cations. If there is, in general, a positive correlation between
the location of the gene and its duplicate in the genome,
clusters will be more abundant than dispersed patterns. Note
that the approach used here is very much a statistical one, in
the sense that no particular events are "prohibited" by the
model. To test the predictions made by the model, it will be
necessary to compare multiple related taxa or, if possible,
several networks of transcriptional regulators within a single
taxon. Although insufficient empirical data is as yet available
to rigorously test these predictions, data from various "ge-
nome projects" under way, as well as ongoing characteriza-
tion of candidate networks, will most likely make such tests
feasible soon.
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